Quasi-nonparametric blind inversion of Wiener systems
نویسندگان
چکیده
An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.
منابع مشابه
Blind Inversion of Wiener System Using a Minimization-projection (mp) Approach
In this paper, a new algorithm for blind inversion of Wiener systems is presented. The algorithm is based on minimization of mutual information of the output samples. This minimization is done through a Minimization-Projection (MP) approach, using a nonparametric “gradient” of mutual information.
متن کاملAn immune-inspired, information-theoretic framework for blind inversion of Wiener systems
This work proposes a new approach to the blind inversion of Wiener systems. A Wiener system is composed of a linear time-invariant (LTI) sub-system followed by a memoryless nonlinear function. The goal is to recover the input signal by knowing just the output of the Wiener system, and the straightforward scheme to achieve this is called the Hammerstein system –– apply a memoryless nonlinear map...
متن کاملNonparametric System Identification
This article presents a survey of various methods for nonparametric identification of nonlinear systems. Nonparametric identification methods are those that measure Wiener kernels or Volterra kernels, since an output of a nonlinear system can be described by the convolution integral of Wiener or Volterra kernels and the system input. Section 1 highlights the representation methods of nonlinear ...
متن کاملBayesian semiparametric Wiener system identification
We present a novel method for Wiener system identification. The method relies on a semiparametric, i.e. a mixed parametric/nonparametric, model of a Wiener system. We use a state-space model for the linear dynamical system and a nonparametric Gaussian process model for the static nonlinearity. We avoid making strong assumptions, such as monotonicity, on the nonlinear mapping. Stochastic disturb...
متن کاملAn iterative inversion approach to blind source separation
In this paper we present an iterative inversion (II) approach to blind source separation (BSS). It consists of a quasi-Newton method for the resolution of an estimating equation obtained from the implicit inversion of a robust estimate of the mixing system. The resulting learning rule includes several existing algorithms for BSS as particular cases giving them a novel and unified interpretation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2001